• Welcome

    Thanks for stopping by.

    About me

    About me:

    I am an Assistant Professor in the Rubenstein School of Environment and Natural Resources at the University of Vermont.


    I use a variety of approaches to answer questions rooted in applied population ecology, conservation biology, and disease ecology. Much of my work involves developing or using innovative quantitative tools to help managers and conservationists make decisions in an uncertain world. You can find my CV here.


    I always seek opportunities to show different groups of people how complex, beautiful, and valuable our ecosystems are. Check out my outreach and teaching tab for more on this.



    October 2019 - present: Assistant Professor, Rubenstein School of Environment and Natural Resources, University of Vermont.


    October 2017 - September 2019: Postdoctoral researcher; Pennsylvania State University and USGS Amphibian Research and Monitoring Initiative


    2017: PhD Fish, Wildlife, & Conservation Biology; Colorado State University

    Dissertation: Conservation and ecology of amphibians imperiled by chytridiomycosis. Advised by Drs. Larissa Bailey and Kathryn "Kate" Huyvaert


    2011: MS Fish & Wildlife Management; Montana State University

    Thesis: Implications of a mountain pine beetle epidemic for bird populations


    2009: BS Natural Resources; Cornell University


    Here are the wonderful people that make our lab unique

    Brittany Mosher, Ph.D.

    I work with my students to use a variety of approaches to answer questions rooted in applied population ecology, conservation biology, and disease ecology. My work often involves developing or using quantitative tools to help managers and conservationists make decisions in an uncertain world. I am an Assistant Professor in the Rubenstein School of Environment and Natural Resources at the University of Vermont. I love to garden and experiment in the kitchen.

    Matthew Gorton (M.S. student)

    I am extremely interested in the dynamics of ecosystems, especially in regard to wetland and aquatic habitats; using occupancy modeling to determine important variables for occupancy for various species of amphibians and reptiles, studying the impact road mortality has on turtle populations, and exploring how reptiles and amphibians move throughout the landscape.


    I really enjoy building tables, cutting boards, and pretty much anything out of wood.

    Lindsey Pekurny (M.S. student)

    My research focuses on amphibian management; specifically, how can we best manage for amphibians in the face of multiple, interacting threats? Currently, I am working on an analysis to better understand eastern red-spotted newt occupancy in the Northeast, and how to use that knowledge to implement better management protocols, especially considering threats such as the fungal pathogen Batrachochytrium salamandrivorans.


    When I am not working, I enjoy rock climbing, skiing, and horse-back riding. During covid, I found a love for baking and adopted a kitten.

    Reed Scott (Ph.D. student)

    My research interests are currently focused on the interaction between disease prevalence and biodiversity. Specifically, how can the species composition of a community affect disease prevalence? In systems where a single pathogen can infect multiple host species, each species is likely to vary in its reaction to infection. That variation can lead to some species becoming “reservoir hosts” which are able to tolerate infection, while other more susceptible hosts may decline to the point of extirpation. As such, the ability of a disease to persist in a community can depend on the identity of hosts present, as well as total biodiversity and relative abundance of each species. My hope is that by improving our knowledge of disease dynamics, we can better inform management and conservation efforts, specifically regarding re-introduction efforts.


    In my free time I enjoy games of all kinds, hiking, biking, running, and trying out different kinds of teas.


    My science is motivated by applied research questions, though the findings often have broad ecological implications. I use carefully designed field studies, laboratory experiments, and model-based techniques to make sense of complicated systems.

    Understanding species distributions

    Where do we find populations, and why?

    Studying populations in flux gives us an opportunity to learn what our world might look like in the future. Some changes happen quickly, for instance when populations are exposed to a novel pathogen. Other changes might be more gradual, as processes like competition or climate slowly cause shifts in species ranges. Whether studying an invader, a population under siege, or a community of species, we can use a variety of tools to understand why populations are shifting and what we might be able to do about it.

    Supporting decision-makers

    Working closely with resource managers yields important insights about the complexities of management decision-making. Developing frameworks that identify plausible management actions for meeting objectives can streamline conservation action. Recently, I have worked on identifying optimal management strategies in amphibian disease systems, which may involve translocations and reintroductions.

    Disease ecology

    Amphibian disease dynamics

    Amphibians worldwide are declining at unprecedented rates. An invasive fungus is one culprit that is doing damage in the Rocky Mountains. Though once common in Colorado, the state-endangered boreal toad has disappeared from many high-elevation wetlands coincident with the arrival of the amphibian chytrid fungus. My research identifies the factors that make some boreal toad populations more susceptible to disease than others, and also investigates how to detect the fungus where amphibians no longer exist.


    PUBLICATIONS (peer-reviewed publications, popular press articles, and book chapters)



    A.M. Verrilli, N.F. Leibman, A.E. Hohenhaus, and B.A. Mosher. Safety and efficacy of a ribose-cysteine supplement to increase erythrocyte glutathione concentration in healthy dogs. 2021. American Journal of Veterinary Medicine, 82(8). In press.


    D. Grear, B.A. Mosher, et al., Evaluation of regulatory action and surveillance as preventive risk-mitigation to an emerging global amphibian pathogen Batrachochytrium salamandrivorans (Bsal). 2021. Biological Conservation. In press.



    H.J. Waddle, D.A. Grear, B.A. Mosher et al. Batrachochytrium salamandrivorans (Bsal) not detected in an intensive survey of North American amphibians. 2020. Scientific Reports. 10, 13012. DOI: https://doi.org/10.1038/s41598-020-69486-x.


    E. Muths, B.R. Hossack, E.H. Campbell Grant, D.S. Pilliod, and B.A. Mosher. Effects of snowpack, temperature, and disease on demography in a wild population of amphibians. 2020. Herpetologica Special Issue. 17 (2): 132-143. DOI: https://doi.org/10.1655/0018-0831-76.2.132.


    B. A. Mosher, R. F. Bernard, et al. Successful molecular detection studies require clear communication among diverse research partners. 2020. Frontiers in Ecology and the Environment. 18(1), 43-51. DOI: https://doi-org/10.1002/fee.2141.



    R. E. Russell, B. J. Halstead, B. A. Mosher, et al. Effects of amphibian chytrid fungus on apparent survival of frogs and toads of the western USA. Biological Conservation. (Accepted.)


    B. A. Mosher, R. F. Bernard, et al. Broadening the conversation: molecular detection, conservation, and communication. Frontiers in Ecology and the Environment. (Accepted).


    B. A. Mosher et al. Estimating occurrence, prevalence, and detection of amphibian pathogens: insights from occupancy models. Journal of Wildlife Diseases. (DOI: 10.7589/2018-02-042).


    B. A. Mosher, K. P. Huyvaert, and L. L. Bailey. 2018. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen. Oecologia, 188(1): 319-330. DOI: 10.1007/s00442-018-4167-6.


    B. M. Brost, B. A. Mosher, and K. A. Davenport. 2018. A model-based solution for observational errors in clinical studies. Molecular Ecology Resources, 18:580-589. DOI: 10.1111/1755-0998.12765.


    B. D. Gerber, S. J. Converse, H. J. Crockett, B. A. Mosher, E. Muths, and L. L. Bailey. 2018. Identifying species conservation strategies to reduce disease-associated declines. Conservation Letters, 11(2): 1-10. DOI: 10.1111/conl.12393.


    B. A. Mosher, L. L. Bailey, and K. P. Huyvaert. 2018. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads. Ecological Applications, 28(4): 928-937. DOI: 10.1002/eap.1699.


    B. A. Mosher, L. L. Bailey, B. A. Hubbard, and K. P. Huyvaert. 2018. Making inference using complex occupancy models with an unobservable state.  Ecography, 41(1): 32-39. DOI: 10.1111/ecog.02849.


    K. A. Davenport, B. A. Mosher, B. M. Brost, D. Henderson, N. Denkers, A. Nalls, E. McNulty, C. Mathiason, and E. Hoover. 2018. Distinguishing the shedding and detection of chronic wasting disease prions in deer saliva using occupancy modeling. Journal of Clinical Microbiology, 56(1): e01243-17. DOI: 10.1128/JCM.01243-17.



    B. A. Mosher, K. P. Huyvaert, T. Chestnut, J. L. Kerby, J. D. Madison, and L. L. Bailey. 2017. Design- and model-based strategies for detecting and quantifying an amphibian pathogen in environmental samples. Ecology and Evolution, 7(24): 10952–10962. DOI: 10.1002/ece3.3616.


    S. J. Converse, L. L. Bailey, B. A. Mosher, W. C. Funk, B. D. Gerber, and E. Muths. 2017. A model to inform management actions as a response to chytridiomycosis-associated decline.  EcoHealth , 14(S1): 144–S155. DOI: 10.1007/s10393-016-1117-9


    Book Chapters

    B. Gerber, B. A. Mosher, D. Martin, T. Chambert, and L. L. Bailey. (2017). Occupancy models. In A Gentle Introduction to Program MARK (Chapter 21). Available from phidot.org/software/mark/docs/book.


    Popular Press

    B. A. Mosher, B. Gerber, and L. L. Bailey. (2017). “Saving amphibians from a deadly fungus means acting before we know all the answers”. The Conversation. Available at: https://theconversation.com/saving-amphibians-from-a-deadly-fungus-means-acting-without-knowing-all-the-answers-81739.


    B. A. Mosher. (2016). “Love in the time of chytrid.” Guest post on the HumanNature blog. Available at: http://blog.sustainability.colostate.edu/?q=mosher.

  • Prospective Students

    Interested in joining the lab? Check out the information below.

    Undergraduate Students

    If you're a motivated undergraduate student interested in gaining research experience, let's discuss your research interests and whether they might be a good fit for my lab. Please send me a resume and short email describing your interests. I am especially interested in students with interests in amphibians, disease ecology, and field work in conjunction with learning statistical modeling skills.

    Graduate Students and Postdocs

    As graduate positions and postdoctoral become available I will post them here as well as on several job boards including the Texas A&M Wildlife Job Board.


    You can learn more about the application process on the Rubenstein School graduate program webpage. In addition, I welcome inquiries from students and scholars who are interested in applying for funding (e.g., NSF GRFP) and who are highly self-motivated.


    I and a team of collaborators are currently advertising for a postdoctoral researcher to be based at UMass - Amherst to conduct research on developing a model that incorporates various detection challenges to aid pathogen surveillance and disease management initiatives. The advertisement can be found here.



    Read about Anura, the lonely boreal toad, by clicking here.

    Doing nothing is a decision, too - read about taking action despite uncertainty to save amphibians.

    Why teach?

    Communication is the final step of the scientific method, and I take this step seriously. If our science does not become relevant to others, how can we expect to live in a world where nature is understood, valued, and preserved?


    At the University of Vermont, I teach or have taught Principles of Wildlife Management (WFB174), Conservation Biology (WFB224), Field Herpetology (WFB141), Herpetology (WFB 195), and Ecology, Ecosystems, and Environment (NR 103).


    In addition to publishing findings, presenting at meetings, and teaching undergraduate students, I strive to connect science with diverse groups of people, ranging from undergraduate students to policy-makers to children. I'm a proud Letters to a Pre-Scientist and Skype-a-Scientist volunteer.

    I've completed a portfolio as part of the Teaching Certificate Program through The Institute for Learning and Teaching (TILT) at Colorado State University. Check it out to see my teaching philosophy, mentoring philosophy, and sample course materials.

    Teaching Experience

    This July I'll be teaching a course in occupancy estimation at the Smithsonian-Mason School of Conservation. If you're interested or have questions, get in touch!


    I have served as the primary instructor for a senior-level capstone course in Wildlife Data Collection and Analysis during CSU's semester abroad program in Todos Santos, Baja California Sur, Mexico.


    In addition, I have taught or co-taught several workshops:

    - Introduction to R at the annual Wildlife Society meeting (2017 and 2018)

    - Program MARK workshops w/Gary White across the country (2014-2017)


    I've served as a TA and partial instructor for the following classes at Colorado State University:

    FW661: Sampling and Analysis of Vertebrate Populations

    FW370: Design of Fish and Wildlife Projects

    FW471: Wildlife Data Collection and Analysis



    I look forward to hearing from you!